Le radio-télescope chinois FAST (Five-hundred-meter Aperture Spherical radio Telescope) vient de démarrer ses opérations. Mais pour scanner le ciel à la recherche de pulsars, il génère tellement de données qu'il faut les dégrader pour les analyser sur le long terme.
Dans un article scientifique récent, les Dr Yue et Li expliquent que le radiotélescope FAST a un souci de « Big Data ». Mais contrairement à d'autres et leurs milliers de points d'entrée, leurs données viennent toutes d'une seule source : le réseau de 19 détecteurs en bande L de leur instrument FLAN, qui est utilisé pour scanner le ciel à la recherche de nouveaux pulsars. Ces événements astronomiques émettent à intervalles réguliers, parfois aussi faibles que 0,1ms, et leur signaux sont régulièrement enfouis au sein d'un important bruit de mesure : il faut utiliser des procédés mathématiques (les étudiants universitaires reconnaîtront les transformées de Fourier) pour les isoler. Mais tout cela nécessite du temps de calcul, sur d'importants sets de données.
La loi de Moore ne pardonne pas
Le radio-télescope Parkes, utilisé pour scanner le ciel depuis août 1997, produit des données au rythme de 0.64 Mo/s, et ses jeux de données sur une année atteignent 4 To, ce qui est « trivial » à analyser pour un ordinateur moderne selon les chercheurs chinois. Leur télescope cependant, entré en opérations en septembre 2019, ne joue plus dans la même catégorie : il enregistre les signaux radio sur 38 canaux, un milliard de fois par seconde. Soit 38 Go/s de données qu'il faut ensuite transformer pour analyse ! Impossible de les stocker sans investir dans un impressionnant système dédié uniquement au transfert des données, et impossible à traiter sans un super-ordinateur de premier plan.Pulsars, haut débit
Selon les auteurs, il y avait deux méthodes à portée de main : développer un système d'IA capable d'analyser les données à la recherche de pulsars « à la source », ou bien dégrader les données pour les enregistrer et se laisser une chance de les analyser plusieurs fois avec la communauté nationale et internationale. Ils ont choisi cette seconde option. D'abord en réduisant les capacités de la prise d'échantillons (aucun pulsar ne nécessite un milliard de données par seconde pour être détecté), ensuite en dégradant la résolution des données. En deux temps, leurs travaux ont d'abord réduit le jeu de données à « seulement » 200 Pétaoctets/an, avant de faire d'autres concessions sur les données et d'obtenir un volume honorable de 12 Pétaoctets/an.La recherche sur les pulsars, qui devrait profiter de FAST pour faire un important bond en avant, garde donc une grosse réserve de performance liée... A son système de données.
Source : Arxiv.org.